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A derivation of the heat transfer equation is based on an extension of
the Reynolds analogy to turbulent gas and liquid dispersed suspensions
with a low solids concentration at Pr = 1 with allowance for the mo-
tion of the boundary layer.

In [1] a theoretical relation was obtained for de-
termining the rate of heat exchange with through flows
of the "gas suspension" type in cylindrical channels.

In deriving this relation in the first approximation cer-
tain assumptions were made, the most important of
which are the assumption of zero boundary layer velo-
city (v' =0) and the assumption that Prg=1. For gas-
dispersed flows with a low true volume concentration

B = 0.03— 3%, the experimental data indicate that
these assumptions are quite acceptable. ’

In order to solve the problem for nonzero boundary
layer velocity and Pry = 1, it is necessary to depart
from the simplified model and to take into account,
together with the turbulent flow, the turbulent boundary
layer, which consists of a transition layer and a lam-
inar sublayer. We will examine the shear stresses and
heat fluxes in the viscous sublayer and then in the in-
termediate layer and the turbulent core.

The laminar sublayer is characterized by the pre-
sence of considerable variation of the velocity and
temperature of the flow components along the normal
to the heating surface (along the y-axis). The longi-
tudinal thermal diffusivity is small and in our case
can be neglected. Moreover, for disperse flows with
a low solids concentration it may be assumed that the
rheological properties are almost Newtonian. Then
the characteristics of the shear stress in the sublayer
will be taken into account by the apparent viscosity e
in accordance with the approximation [2]
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Assuming that at the wall the velocity is zero and
that the part of the velocity profile in the region of a
laminar sublayer of thickness g is linear, we find

the following expression for the change of flow velocity
in the sublayer: v{—vy =v}.

The specific heat flux density in this sublayer is de-
termined by the heat conduction mechanism and, in
accordance with Fourier's law,

~ . (2)

Here, )\% is the apparent thermal conductivity in the
sublayer of the disperse flow, which can be found from
Maxwell's formula
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For gas suspension flows Ag =~ X, Tn the general
case the quantities 6)g and 614 in (1) and (2) are not
equal, though this is not usually noted. By analogy
with a laminar boundary layer we assume that
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It Is eagy to note that when Pry = 1—gas suspension
flows—4jg = 6y4, while when Pry > 1—liquid suspension
flows—6y; < d1g.

Using (3), we express (2) in terms of (1):
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Since Prg = pges/Ag,
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In the intermediate buffer layer heat is transported
by both conduction and turbulent mixing. In this case
it is necessary to take into account both the molecular
and the turbulent shear stresses. Usually, two differ-
ent momentum and heat transport mechanisms are
taken simultaneously into account in the form char-
acteristic of the viscous sublayer. For our case we
obtain

Comparison of Calculated and Experimental Data

‘Gas-graphite particles

Water-graphite particles

B, m*/m? !
|Nug/ Nu acc. to (15){Nug/ Nu acc.to |1] { Nug/ Nu acc-to (13) | Nug/Nu acc.to [5]

0.005 2.0 2.0 1.0 1.0

0.01 3.0 2.97 0.985 0.990

0.03 7.0 6.8 0.95 0.94

0.05 — — 0.94 0.91

0.10 —_— — 0.895 0.857

0.20 — 0.765 0.692
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Here, &, and g, are the turbulent analogs of the ther-
mal diffusivity and kinematic viscosity for the dis-
perse flow, taking into account the contribution of the
turbulence of the flow components to the total trans-
port across the buffer layer. As distinct from a and
v the molar coefficients €, and €, are not physical pa-
rameters and depend on various characteristics of the
disperse flow (8,d,a /D, Re,...). The molar coeffi-
cients are quant1t1es hard to determme for homoge-
neous and particularly disperse flows.

The turbulent flow outside the buffer layer is char-
acterized by fluctuational heat and momentum transfer

The turbulent flow outside the buffer layer is char-
acterized by fluctuational heat and momentum transfer
so intense that the effect of molecular transport can be
neglected. Then (6) and (7) give

g=sc, =& o [ % ®)
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For homogeneous fiows it is often assumed that
€4/8y =1. For disperse flows such an approach is
scarcely applicable. In view of the difficulty of using
(8), we will determine the heat transfer to the outer
edge of the laminar sublayer from the heat balance ex-
pression, assuming g = @ = tpap/t:

‘
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The corresponding shear stresses ére determined
in accordance with the law of conservation of momen-
tum and the additivity principle, assuming ¢y = Py =

par/ v
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Combining (9) and (10), we obtain
s (_vt)( +hcﬂq’_f)=
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Considering the stationary thermal regime, i.e.,
dt/dr =dtpay MATpay =0, we obtain q) =q. Then from
(5) and (11) we find that
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whence
9 % . A , (12)
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Considering that as ¢, —1 Zf and the heat transfer
coefficient of the disperse flow ap are given by

P 1 4 (Bppar par(Pz/Pc)tNt,\.t

f 14 (ﬁppar par/P C )

and that s¢/s =§f/§; Spar/s =(¢f — g)/é [1] and noting that
for a homogeneous medium, in accordance with the
Prandt] solution, which improves the Reynolds for-
mula by taking into account heat transfer across the
boundary layer
o= SC,, ’ 1 _ SCp E,
U4 -"U— (Pr —1) v

instead of (12) we obtain the following, more general
than in [1], equation of the hydrodynamic theory of
heat transfer for a disperse flow:
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Comparing this expression with that obtained in [1]
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we note that they differ with respect to E;, which takes
into account the effect of Pr > 1 and the motion of the
laminar sublayer.

We will congider certain extreme and particular
cases:

a) in the absence of discrete particles = 0; & =

=§;¢ par = =0, Prp = Pr;cp = then from (14) Ef =

=1, and from (13) o/ = 1 andpozf = a;

b) when Pr =1 E = 1, but E¢ < 1;

c¢) when v; = 0 (stationary sublayer) E; = 1, and
(13) coincides with (13").

In deriving (13) no constraints were imposed on the
Prandt] number. Therefore in general form the solu-
tion obtained is suitable for analyzing both gas and
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liquid disperse flows with a turbulent transporting
medium at low volume concentrations. The latter con-
straint is associated with the effect of increased con-
centration on the flow structure and properties (inten-
sification of the non-Newtonian properties of the system,
reduced degree of freedom of behavior of the discrete
particles, significant change in the rate of intercom-
ponent heat transfer, redistribution of the thermal re-
sistances of the characteristic flow layers, etc.) [1].

These factors essentially determine the limiting
critical concentration beyond which the expressions
obtained are invalid. For a gas suspension we have
estimated these concentration values at 8.,. = 3%,
which corresponds to a flow-rate concentration pgp =
=45—50 (kg/hr) fkg/hr). In this case Af = A; cf = cp;
Pry=PrA1-p)%% ge/f=1+ku=1 +k(ppgr/h) Bey; k=
=¢(Re,Repay, 4, D/dpar- ..). Then for a gas suspen-
sion general expression (13) takes the form
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Clearly, for liquid flows B,y considerably exceeds
3% and approaches 20%. Here, the relative hydrody-
namic drag characteristic can be determined from the
formula based on the data of [3]
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In any case all the quantities entering into (13) and
(14) are physical characteristics either of the flow
components (cp, Cpars Ps Ppara Vs Ay Anaps + - .) or of the
entire system @, cy, &5, Yt, ¥y, . ..), which must be known
or estimated in advance, Obviously, the expres-
sions giving in relative form the relation between
the heat transfer rate and the hydrodynamic drag of
the disperse flow can be used to analyze the effect of
the various facters on the heat transfer characteristics
or for a direct, though undoubtedly approximate, heat
transfer calculation only if laws of the type £;/¢ are
known. As for the significance of the other character-
istics of the disperse system, it must be emphasized
that it is important to estimate the direction of the in-
fluence of growing concentration on the variation of
the relative heat transfer rate Nuf/Nu as compared
with unity; in this case 8 exerts an influence not only
through £¢/¢ but also through Pr¢ and Cp/Cf.

The determination of v'/v presents difficulties,
especially for media with Pr > 1 (liquids). For gases
the choice of a method of estimating the velocity sim-
plex cannot introduce a significant error, since, in

~accordance with (16), the complex E; is only a few
percent less than unity and in first approximation need
not be taken into account at all. For homogeneous
flows, on the basis of experiments Prandtl has pro-
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posed the approximation v'# =0.3. L. S. Leibenzon
has theoretically calculated this ratio for a liquid pipe
flow with a parabolic variation of velocity in the lam-
inar boundary layer and obtained v'/v = 0.33. There
have been other recommendations, for example, v!/
/v =1.714 ReV/3 or V' = 1.5 Re™1/8 Pr-1/6,

The slip factors of the components with respect to
velocity and temperature (@y and ¢y) have not. been
formally introduced. Their appearance is predeter-
mined by the heterogeneity of the flow system. In the
general case the value of these coefficients is deter-~
mined as the sum of the hydrodynamic and thermal
intercomponent interactions. To estimate ¢y it is
necessary to determine the large-scale fluctuation
time 7; required for the establishment of intercom-
ponent temperature equilibrium. In accordance with
(11, if Tpar = 0.7d*par/opgy, then @y may be taken equal
to unity, since the transverse fluctuation time is suf-
ficient for there to be no intercomponent temperature
drop and for t = tpar at any point of the flow cross
section. Inaccordance with [4], the particletransverse
fluctuation period

e D _ D 1+ i
par ™ v ) 1.50 2
par. flu flu l/ ( _ i ) -+ th @
Ppar TO/

In the first approximation the velocity slip factor
can be estimated for the stabilized flow region:

gv::’uzl_

v
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Obviously, for small or light particles v
@y =1,

In the more general case, with allowance for par-
ticle acceleration, but assuming that the flow over
the particles is self-similar (for irregular particles
with a nonsphericity factor of 1.16~1.5 at Repay >
> 100 — 200), in accordance with [1]

w <V and

@, =1 7 cthy,
v

y = £ 105 %—U'e‘+vw.
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The fluctuation velocity slip factor for any moment

of time [4]
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Expressions (13) and (15) were compared with ex-
perimental data [1, 5] for gas and liquid suspensions
of graphite particles at Re = 3.10%, v' 4 =0.33, t =
=100° C, and Repyy =8 (see table).

In addition to the satisfactory agreement between
the experimental and theoretical data, the table reveals
that an increase in solids concentration has differently
directed effects on Nug/Nu. Thus, there is a signifi-
cant intensification of heat transfer for gas-graphite
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suspensions and a certain reduction for water-graphite
suspensions (for other aqueons suspensions Nuf/Nu
may also be greater than unity, but only very slightly—
by a few percent). This, at first glance, paradoxical
result was first examined in [1], but a fuller explana-
tion ean be obtained on the basis of an analysis of (13)
from the standpoint of the hydrodynamic theory of heat
transfer.

NOTATION

s denotes shear stresses; p is the coefficient of
dynamic viscosity; v is the velocity; 8 is the true vol-
ume concentration; A is the thermal conductivity of the
liquid (gas); t is the temperature; iy and 61t are the
thicknesses of hydrodynamic and thermal boundary
layers; cp is the mass specific heat of liquid at con~
stant pressure; p is the density; Re, Pr, Nu are the
Reynolds, Prandtl, and Nusselt numbers of liquid;
dpar and D denote the diameter of particles and chan-
nel; £ is the coefficient of friction; ¢y and ¢t are the
nonuniformity factors, "slip" of flow components with
respect to velocity and temperature; k is the analog of
Gasterstidt coefficient; G' and G'pay are the trans-
verse mass flow rate of continuous and discrete flow
components caused by large-scale turbulent fluctua-
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tions; F is the channel heating surface; tx, txpar, Vx»
and vxpay are the temperatures and velocities of flow
components in the turbulent core; vgyp is the critical
particle velocity; 7 is the time of motion; vye] is the
relative initial velocity; « is the coefficient of heat
transfer between flow and heating surface., Subscripts:
par) solid particles; f) disperse flow; w) wall; flu) fluc-
tuating quantities; prime) quantities at edge of laminar
sublayer.
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